Abstract

The crystal grain size of the work material is relatively large compared to the removal depth in micro-scale cutting. Therefore, the micromilling requires the small crystal grains in the material to machine accurate products in a stable manner. The study investigates the effect of crystal grain size on the cutting process in micromilling. The crystal grains of stainless steel in this study are downsized to an average size of 1.5 μm by repetition of material forming and phase transformation. The milling processes of ultra fine-grained steels were compared with those of normal grain steels. The milling tests were performed to measure the cutting force and the surface quality. The force component ratio of the ultra fine-grained steel is higher than that of the normal grain steel. The shearing force decreases in cutting of the ultra fine-grained steel; meanwhile, the friction and/or the indentation forces increase. Burr formation can be reduced with the crystal grain size. In cutting of the normal grain steel, thrust component in the cutting force suddenly drops near the end of the grooves and a large burr is left on the edge of the groove.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call