Abstract

A freeze-thaw cycle in frozen products occurs when the temperature fluctuates during storage or transportation, causing drip loss, changes in ice crystal reformation, and textural protein. In practical freezing, using cryoprotectants in frozen products aids in delaying the physicochemical changes. The problem has been found in commercial frozen jellyfish with sesame oil, causing the separating oil and water derived from drip loss of thawed jellyfish protein. This study aimed to select an appropriate cryoprotectant and concentration for frozen jellyfish products. Therefore, this research compared the changes in the physical and textural properties of desalted jellyfish collagen protein soaked in inulin, sucrose, or sorbitol at 1, 5, and 10% and subjected to three freeze-thaw cycles. Results showed increased concentration of each cryoprotectant increased soaking yield. The maximum soaking yields of desalted jellyfish were 2.49 ± 0.54, 2.79 ± 0.82, and 2.78 ± 0.51%, and each cryoprotectant content was 7.18 ± 0.01, 7.54 ± 0.00, and 8.58 ± 0.32% when using static soaked in inulin, sucrose, and sorbitol at 10%. During the freeze-thaw cycle, the retardation of the denatured jellyfish protein from ice crystals increased when desalted jellyfish were immersed in inulin, sucrose, or sorbitol at the maximum concentration of 10%, displaying the drip losses at 27.88 ± 0.45, 29.45 ± 0.35, and 28.56 ± 0.73% that lowered than the control at 56.54 ± 0.64%. The increased repeated freeze-thaw cycles increased the compact structure of thawed jellyfish collagen, supported by microstructure analysis. In summary, inulin at 10% appears to have a cryoprotective effect similar to sucrose and sorbitol and will be a choice for commercial frozen jellyfish-based food menu development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call