Abstract

ABSTRACTZero-valent iron (ZVI) is commonly used as a medium in permeable reactive barriers (PRBs) because of its high reducing ability. The generation of H2 gas in PRBs, however, can decrease the permeability of PRBs and reduce the contact area between the PRB and contaminated groundwater. This study investigated the effect of the initial Cr(VI) concentration ([Cr(VI)init]) in aqueous solutions containing Cl− ions on the generation of H2 gas. ZVI chips were reacted in reactors with 0.5-M NaCl solutions with [Cr(VI)init] ranging between 51 and 303 mg/L. The initial pH was set at 3. The oxidation of ZVI chips by Cr(VI) in aqueous solutions containing Cl− ions produced H2 gas and particles (Fe(III)–Cr(III)(oxy)hydroxides). The Cr(VI) removal from aqueous solutions increased as the [Cr(VI)init] increased, as did H2 gas generation. The positive effect of [Cr(VI)init] on H2 gas generation might be due to an increase in the redox potential gradient as [Cr(VI)init] increases. This increased gradient would enhance H+ ion penetration through the passive film (Fe(III)–Cr(III)(oxy)hydroxides), which formed on the ZVI surface, by diffusion from the solution to pits beneath the passive film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.