Abstract

We studied the effects of crucible rotation on distribution of oxygen concentration in a crystal during the unidirectionally solidification process of multicrystalline silicon for solar cells. Oxygen concentration in the melt increased when crucible rotation rate was increased. Oxygen concentration in the silicon crystal was distributed inhomogeneously in the radial direction when crucible rotation rate was increased. This is due to suppression of oxygen transport. Consequently, less oxygen was transported from the crucible wall to the center of the melt. We found that oxygen concentration is small in the whole ingot and homogenized in the radial direction when crucible rotation rate during the solidification process is set to 1 rpm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.