Abstract
HypothesisMicrogels assembled from the protein β-lactoglobulin are colloidal structures with potential applications in food materials. Modifying the internal crosslinking within these microgels using enzymatic or chemical treatments should affect dissolution, swelling, and viscous attributes under strongly solvating conditions. ExperimentsMicrogels were treated with citric acid, glutaraldehyde and transglutaminase to induce cross-linking or with tris(2-carboxyethyl)phosphine to reduce disulfide linkages. Change in hydrodynamic particle size due to acidic pH, alkaline pH, ionic strength, osmolyte concentration, ethanol, urea, sodium dodecyl sulfate, and reducing agents was evaluated by light scattering measurements. Changes in microgel nanomechanical properties were evaluated via force spectroscopic measurements in water. FindingsAverage microgel size increased ∼20% in alkaline pH and with ethanol contents above 10%, and decreased ∼20% with sucrose contents above 10%. Cross-linking by glutaraldehyde and transglutaminase prevented size increases in alkaline pH. Microgel plasticity and elastic modulus were unaffected by treatments. Microgels treated with glutaraldehyde were found to have much greater stability to urea, sodium dodecyl sulfate, and reducing agents when compared to other samples. Even without cross-linking, microgels remained stable against precipitation and dissolution over a wide range conditions, indicating their broad utility as colloidal stabilizers, texture modifiers or controlled release agents in food or other applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.