Abstract

In this investigation, we systematically explored the intricate relationship between the structural attributes of polyvinyl alcohol (PVA) membranes and their multifaceted properties relevant to fuel cell applications, encompassing diverse crosslinking conditions. Employing the solution casting technique, we fabricated crosslinked PVA membranes by utilizing phosphoric acid (PA) as the crosslinking agent, modulating the crosslinking temperature across a range of values. This comprehensive approach aimed to optimize the selection of crosslinking parameters for the advancement of crosslinked polymer materials tailored for fuel cell contexts. A series of meticulously tailored crosslinked PVA membranes were synthesized, each varying in PBTCA content (5-30 wt.%) to establish a systematic framework for elucidating chemical interactions, morphological transformations, and physicochemical attributes pertinent to fuel cell utilization. The manipulation of crosslinking agent concentration and crosslinking temperature engendered a discernible impact on the crosslinking degree, leading to a concomitant reduction in crystallinity. Time-resolved attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was harnessed to evaluate the dynamics of liquid water adsorption and ionomer swelling kinetics within the array of fabricated PVA films. Notably, the diffusion of water within the PVA membranes adhered faithfully to Fick's law, with discernible sensitivity to the crosslinking conditions being implemented. Within the evaluated membranes, proton conductivities exhibited a span of between 10-3 and 10-2 S/cm, while methanol permeabilities ranged from 10-8 to 10-7 cm2/s. A remarkable revelation surfaced during the course of this study, as it became evident that the structural attributes and properties of the PVA films, under the influence of distinct crosslinking conditions, underwent coherent modifications. These changes were intrinsically linked to alterations in crosslinking degree and crystallinity, reinforcing the interdependence of these parameters in shaping the characteristics of PVA films intended for diverse fuel cell applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.