Abstract

The properties of the extracellular matrix (ECM) have profound impact upon cell behaviour. As an abundant protein in mammals, collagen is a desirable base material to engineer an ECM tissue scaffold, but its structural weakness generally requires molecular crosslinking or incorporation of additional ECM-based macromolecules such as glycosaminoglycans. We have performed microscopic indentation to test collagen films under dry and aqueous conditions prepared with different levels of physical and chemical crosslinking. Our technique isolates intrinsic properties of the poro-viscoelastic matrix in a regime minimizing the influence of drainage hydrodynamics and allows direct measurement of the effect of hydrating a specific sample. A doubling of the effective stress-strain stiffness under crosslinking could be directly correlated to structural changes in X-ray diffraction spectra, while electron microscopy revealed possible fibril bridging mechanisms explaining observed toughness. Overall, an intrinsic viscoelastic stress-strain response of collagen under various conditions of cross-linking was observed for both dry and wet conditions, with the latter most affected by indentation rate. Under creep testing, a three order of magnitude increase in dynamic compliance and factor three reduction in relaxation time was found going from the dry to hydrated state. When fitted to a viscoelastic model, crosslinking showed a tendency to decrease relaxation time but gave no recognizable trend to dynamic compliance. This is the first reported approach that allows for repeatable mechanical data on dry and hydrated ECM-derived biomaterials, accessing the intrinsic material mechanics under in vivo-like conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.