Abstract

Ultrahigh molecular weight polyethylene (UHMWPE) is a bearing surface material for total joint implants. It is radiation cross-linked for high wear resistance and is melted or treated with vitamin E for oxidative stability. We investigated high pressure crystallization (HPC) of irradiated UHMWPE as an alternative method to improve the mechanical strength while stabilizing the residual free radicals from radiation cross-linking. HPC of uncross-linked UHMWPE has resulted in the formation of extended chain crystals and increased crystallinity, leading to improved strength. We hypothesized that increased cross-link density would hinder crystallization during HPC due to decreased chain mobility. Therefore, we investigated the crystalline structure and tensile mechanical properties of high pressure crystallized 25-, 65- and 100-kGy irradiated UHMWPE. We also determined free radical content and wear. The strength of 25- and 65-kGy irradiated UHMWPEs was improved by HPC with increased crystallinity and crystal size. 100-kGy irradiated UHMWPE did not show improved strength, supporting our hypothesis that decreased chain mobility would hinder crystal formation and strength improvement. None of the HPC irradiated UHMWPEs contained detectable free radicals and their wear properties were maintained, suggesting oxidative and mechanical stability in the long term. Therefore, HPC can be used effectively for imparting oxidative stability while strength improvement can be achieved for irradiated UHMWPE with low to moderate cross-link density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.