Abstract

In large-scale applications such as arrays of axial fans in air-cooled heat exchanger systems, edge–proximity and wind-induced cross-flow may decrease the flow through some fans by causing the flow to enter them at off-axis angles. In this study, such off-axis inflows were introduced by inserting inlet pipe sections between the plenum chamber of a standard test facility and one of three different scale model test fans of 1542 mm diameter. Fan power consumption turned out to be completely independent of off-axis inflow angle up to 45°. Fan total-to-total pressure rise was found to be independent of off-axis inflow angle, and the decrement in fan pressure rise was equal to the dynamic pressure based on the cross-flow velocity component at the fan inlet. Analysis showed that for model fans to represent the cross-flow behaviour of their prototypes, they should have the same ratio of dynamic pressure to pressure rise, and the same dimensionless characteristic slope at their operating points. The performance of a row of fans operating at off-axis inflow conditions representing a cooling system was well predicted by a simple model assuming that the fans farther from the edges induce cross-flows over the fans closer to the edges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call