Abstract

The correlation between the flow stress and grain size for severely deformed metals remains undefined because the conventional Hall-Petch relationship ignores the expected contributions from thermally-activated phenomena in nanomaterials and also it fails to explain the reported strain softening of metals having low melting temperatures. In this study, the contribution of thermally-activated creep mechanisms to the room temperature flow stress is evaluated for 31 pure metals processed by high-pressure torsion. The steady-state grain size and the hardness of these metals are first compared to theoretical predictions from high temperature creep mechanisms. It is shown that these mechanisms are not able to predict the flow stress, although the data from metals with low melting temperatures fall close to the theoretical prediction for high-temperature grain boundary sliding suggesting a possible explanation for the unusual softening of these metals. Nevertheless, a detailed analysis demonstrates that a modified model for grain boundary sliding at low temperature provides the capability of correctly predicting the flow stresses for metals having both high and low melting temperatures. The results confirm the significance of thermally-activated phenomena in determining the flow stress of nanomaterials processed by severe plastic deformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.