Abstract
A series of high chromium white cast iron (HCCI) alloys with varying Cr:C ratios were designed and fabricated through the squeeze casting process. This study investigates the effect of the Cr:C ratio on the mechanical properties, microstructure, phase diagram, and both low-stress and high-stress abrasion performance of HCCIs. Alloys with a very high Cr:C ratio exhibited better impact toughness but poorer hardness. Scanning electron microscopy (SEM) and phase diagram calculations elucidated the influence of the Cr:C ratio on microstructure, carbide volume fraction, and carbide type. Abrasion resistance was evaluated using impact abrasive wear (high-stress) and rubber-wheel (low-stress) abrasion on quartzite in open three-body wear. Comprehensive assessments under impact abrasive wear and rubber-wheel abrasive wear conditions suggest that the alloy achieves optimal abrasion resistance with a Cr:C ratio ranging from 8 to 11. Post-wear analysis reveals that surface damage varies between high-stress and low-stress conditions. The microstructure of squeeze HCCIs is significantly influenced by the Cr:C ratio, resulting in diverse operative wear mechanisms, including micro-cutting and micro-fracture. Successful adjustment of the Cr:C ratio led to the attainment of a nearly eutectic HCCIs composition suitable for squeeze casting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.