Abstract

The ductility-dip cracking (DDC) susceptibility of AISI 316L stainless steel weld metals was examined. Modified flux cored arc welding (FCAW) filler wires were fabricated with various chromium and nickel contents. The solidification mode and delta-ferrite content were determined from the chromium and nickel equivalent ratios (Cr eq/Ni eq). Ductility-dip cracking occurred through a grain boundary sliding mechanism in the reheated region of the weld metal in the ferrite at cell and dendrite boundaries (AF mode), and the primary course of DDC formation was associated with the straight migrated grain boundary (MGB) morphology. No DDC was observed in the tortuous MGB due to the pinning effect of delta-ferrite in the continuous network of vermicular type of ferrite (FA mode)/acicular ferrite and continuous austenite network (F mode) weld metals. The DDC at the triple point or the intersection of the MGB showed a creep-like morphology. Severe localized and thermal plastic deformation was observed through the formation of micro-voids when grain boundary sliding was generated in the ductility-dip temperature range under strong restraint conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call