Abstract
The effect of cowl angle on the restart characteristics of simple ramp type hypersonic inlets was experimentally investigated in shock tunnel equipped with schlieren imagery and static pressure measurement. The cowl shock strength is found to be a key factor that determines the inlet restart and makes the restart contraction ratios significantly deviate from the Kantrowitz criterion. Stronger cowl shock tends to degrade the inlet restart capability by causing larger separation bubble and higher pressure loss during the restarting process. In particular, a sensitive range of the cowl angles, within which the restart contraction ratio decreases rapidly, was identified. A design concept of multiple noncoalesced cowl shocks was thus proposed and proven to significantly improve the inlet restart capability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.