Abstract
The interaction between carbon adatoms as a function of the coverage of the Fe(001) and Fe(111) surfaces by carbon has been theoretically investigated using first-principles calculations in terms of the density functional theory. It has been established for the first time that the sequential filling of the upper surface layer by carbon atoms leads to the embedding of a part of atoms in the subsurface iron layer due to the their collective interaction, which provides the possibility of forming the interstitial solid solution. It has been demonstrated that the high coverage of the (001) surface by carbon leads to a considerable decrease in the energy barrier to the diffusion of carbon atoms into the subsurface layer as compared to the diffusion barrier for single atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.