Abstract

Conventional numerical techniques, used to study the acoustics of a car passenger cabin, treat the cabin as an isolated cavity excited by the cavity boundaries. Realistically, other cavity volumes such as the trunk communicate with the cabin through the holes in the parcel shelf of the car. An extended acoustic model of a car is formed by the cavity volumes of the passenger compartment and the trunk as well as air leakages through the holes provided for electrical devices and ventilation on the parcel shelf. In this study, the dynamic influence of air leakages between the passenger and trunk compartments on the first and second coupled system modes was investigated experimentally using acoustic frequency response function. The response to the acoustic excitation was measured for four different configurations of trim and holes of the parcel shelf. The natural frequencies of the first and second coupled system modes increased with increasing holes size with and without the trim of the parcel shelf. The experimental results were in good agreement with the reported results of coupling effects of double cavities connected by a neck. In the low frequency region since the wavelength is longer compared to the holes dimension, these holes act as point sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.