Abstract

In this study, the influence of coupling agent concentration (0 and 3 wt%), wood fiber content (50, 60, 70, and 80 wt%), and size (40–60, 80–100, and 160–180 mesh) on the mechanical properties of wood/high-density-polyethylene (HDPE) composites (WPCs) was investigated. WPC samples were prepared with poplar wood-flour, HDPE, and polyethylene maleic anhydride copolymer (MAPE) as coupling agent. It was found that the tensile properties and the flexural properties of the composites were improved by the addition of 3 wt% MAPE, and the improved interfacial adhesion was well confirmed by SEM micrographs. It was also observed that the best mechanical properties of wood/HDPE composites can be reached with larger particle size in the range studied, while too-small particle size was adverse for the mechanical properties of wood/HDPE composites. Moreover, the tensile modulus, tensile strength, and flexural strength of WPCs decreased with the increase in fiber content from 50 to 80 wt%; the flexural modulus of WPCs increased with the increase in fiber content from 50 to 70 wt% and then decreased as the fiber content reached 80 wt%. The variances in property performance are helpful for the end-user to choose an appropriate coupling agent (MAPE) concentration, wood fiber content, and particle size based on performance needs and cost considerations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call