Abstract

A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. Due to this reason, most algorithms for data streams sacrifice the correctness of their results for fast processing time. The processing time is greatly influenced by the amount of information that should be maintained. This issue becomes more serious in finding frequent itemsets or frequency counting over an online transactional data stream since there can be a large number of itemsets to be monitored. We have proposed a method called theestDec method for finding frequent itemsets over an online data stream. In order to reduce the number of monitored itemsets in this method, monitoring the count of an itemset is delayed until its support is large enough to become a frequent itemset in the near future. For this purpose, the count of an itemset should be estimated. Consequently, how to estimate the count of an itemset is a critical issue in minimizing memory usage as well as processing time. In this paper, the effects of various count estimation methods for finding frequent itemsets are analyzed in terms of mining accuracy, memory usage and processing time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.