Abstract

The existing descriptions of the process of track formation in metals bombarded with high-energy heavy ions are usually based on the T-spike model. However, this model fails to explain high temperatures developed in some target materials (e.g., in copper). We present a comparative analysis of track formation in metals under the action of heavy ion bombardment, as described using the Coulomb explosion model and the T-spike model in various modifications. Both models are used to calculate changes in the temperatures of the electron and ion subsystems in the track region in amorphous alloy Fe85B15) and copper targets bombarded with identical high-energy (E > 1 MeV/nucleon) heavy ions. The results show that the Coulomb explosion model predicts stronger heating of the ion subsystem in the track region (with the possible formation of a melt-through zone) as compared to the T-spike model. The formation of point defects in copper as a result of the ionization losses has been also described using the two models and compared to the available experimental data. The Coulomb explosion model provides for a more adequate description of track formation as compared to the T-spike model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call