Abstract

A theoretical model based on the single electron tunneling phenomenon is employed to calculate the time-dependent electrical resistance of an Ag–Ag2S–Pt atomic switch at different applied voltages. While a negative voltage is applied to Pt electrode, Ag atoms precipitate on the surface of Ag2S electrode where they form Ag clusters. The resistance of switch decreases as Ag clusters grow larger between two electrodes. Our model calculations imply the time required to decrease the resistance of switch below the resistance quantum (switching time) is mainly determined by the Coulomb blockade effect of Ag clusters. The switching time is found to decrease exponentially with increasing the applied voltage, which agrees very well with the experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.