Abstract

This study reports a detailed characterization of a nonionic microemulsion (μE) composed of n-butylacetate/α-tocopheryl polyethylene glycol succinate (TPGS)/alcohol/water. Two approaches of expanding the monophasic area were explored; (i) addition of Pluronic® 123 (P123) in aqueous phase, and (ii) use of short chain alcohol (CnHn+1OH; n = 2–4) as cosurfactant. Pseudo-ternary phase diagrams were constructed using water titration method. Characterizations were performed using dynamic light scattering (DLS), differential scanning calorimetry (DSC), small angle neutron scattering (SANS) and electron microscopic techniques. DSC and SANS results showed gradual structural transformation from water-in-oil to oil-in-water system. The optimized formulation (oil/Smix/water – 19/40/41) showed average hydrodynamic diameter of 22 nm, consistent with electron microscopic observations.Ethanol (EtOH), with its high fluidity and smaller headgroup area, offered maximum expansion in the phase boundary. Surfactant unimers, derived from EtOH-driven de-micellization, reinforced the interface and solubilized the incoming oil molecules. Oil incorporation was accompanied with improved loading of carbamazepine, a hydrophobic drug. Except marginal swelling, no significant microstructural changes were noticed during water dilution (≈90%) and salt addition (0.9% NaCl) in the optimized μE formulation. A linear increase in oil incorporation was noticed upon adding propylene glycol as a cosolvent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call