Abstract

The effect of corticosterone on protein turnover in skeletal muscle was investigated in growing rats. Protein synthesis was measured in vivo by the constant infusion of [(14)C]tyrosine. The extent to which any effect of corticosterone is modulated by the hyperinsulinaemia induced by steroid treatment was examined by giving the hormone not only to adrenalectomized rats but also to streptozotocin-induced diabetic rats maintained throughout the treatment period on two dosages of insulin by an implanted osmotic minipump. Approximate rates of protein degradation were also estimated in some cases as the difference between synthesis and net change in muscle protein mass. Measurements were also made of free 3-methylhistidine concentration in muscle and plasma. At 10mg of corticosterone/100g body wt. per day, growth stopped and muscle wasting occurred, whereas at 5 mg of corticosterone/100g body wt. per day no net loss of protein occurred. However, this low dose did induce muscle wasting when insulin concentration was regulated by a dose of 1.2 units/day. Protein synthesis was markedly depressed in all treated groups, the depression in the insulin-maintained rats being marginally more than in the hyperinsulinaemic adrenalectomized rats. The oxidative soleus muscle appeared to be less susceptible to the effect of the corticosterone than was the more glycolytic plantaris or gastrocnemius muscle. Any effect of the corticosterone on protein degradation was much less than its effects on protein synthesis. Where increases in the degradation rates appeared to occur in the rats treated with 10mg of corticosterone/100g body wt. per day, the increases were less than 20%. The free intracellular 3-methylhistidine concentrations were doubled in all groups treated with 5 mg of corticosterone/100g body wt. per day and increased 5-fold in the adrenalectomized rats treated with 10mg of corticosterone/100g body wt. per day, with no change in plasma concentration in any of the groups. It is therefore concluded that: (a) the suppression of protein synthesis is the main effect of glucocorticoids in muscle; (b) marked increases in insulin afford only minor protection against this effect; (c) stimulation of protein degradation may occur, but to a much lesser extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.