Abstract

Internal fixators are a new class of implants designed to preserve the periosteal blood supply of the bone. In contrast to conventional plate fixation in which the screws have spherical heads and are loaded mainly by axial pullout forces, screws in internal fixators are “locked” within the plate and therefore subjected to axial as well as bending loads. In this study the ultimate loads of screws of a commercially available internal fixator system were tested in a pullout ( n=72) and cantilever bending mode ( n=72) in metaphyseal and diaphyseal regions of four pairs of human tibiae with different bone qualities. Cortical thickness and cancellous bone density were determined at the screw insertion sites. Stepwise multiple linear regression revealed that cortical thickness and cancellous density can explain 93% and 98% of the variance of the ultimate load of the screws in an axial pullout and cantilever bending mode. Screws in internal fixators are better suited to transmit shear forces and thereby make better use of the strength potential of bone than screws used in conventional plate fixation: this is especially advantageous when bone strength is reduced, e.g. due to osteoporosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.