Abstract

PurposeThe purpose of this paper is to investigate the effect of corrugation, wave number, initial stress and the heterogeneity of the media on the phase velocity of the Love-type wave. Moreover, the paper aims to have a comparative study of the presence and absence of anisotropy, heterogeneity, corrugation and initial stress in the half-space, which serve as a focal theme of the study.Design/methodology/approachThe present paper modelled the propagation of the Love-type wave in a corrugated heterogeneous monoclinic layer lying over an initially stressed heterogeneous transversely isotropic half-space. The method of separation of variables is used to procure the dispersion relation.FindingsThe closed form of dispersion relation is obtained and found to be in well agreement to the classical Love wave equation. Neglecting the corrugation at either of the boundary surfaces, expressions of the phase velocity of the Love-type wave are deduced in closed form as special cases of the problem. It is established through the numerical computation of the obtained relation that the concerned affecting parameters have significant impact on the phase velocity of the Love-type wave. Also, a comparative study shows that the anisotropic case favours more to the phase velocity as comparison to the isotropic case.Originality/valueAlthough many attempts have been made to study the effect of corrugated boundaries on reflection and refraction of seismic waves, but the effect of corrugated boundaries on the dispersion of surface wave (which are dispersive in nature) propagating through mediums pertaining various incredible features still needs to be investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.