Abstract
Hitherto, the myriad of researches conducted on biofuels coupled with their poor oxidative stabilities, show that none of these studies has considered monitoring the corrosive effects of Schinzochytrium sp. microalgae biodiesel on diesel engines. In this study, corrosion behaviors of mild steel (MS), aluminum (Al) and copper (Cu) were compared via immersion tests in preheated schinzochytrium sp. microalgae biodiesel and its blends at room temperature and 60 °C for 1200 h. Property-variation of the individual/blended fuels, corrosion rates/products of the metals, and their morphologies were examined. For the metals, the corrosion rates are in the order of Al < MS < Cu at room temperature and 60 °C. The degraded properties and corrosion rates of the metals in the diesel fuel (B-100) and biodiesel fuel-blends, were seen to be minimal relative to those of neat biodiesel (D-100). The morphologies of the metals in contact with the fuels, showed substantial variation in surface properties for the Al, MS and Cu specimens. Furthermore, of all the three metals, copper was most prone to biodiesel corrosion. Hence, the results suggest the need to anticipate a future where the use of corrosion inhibitors for preventing engine-part degradation induced by biofuels becomes a reality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.