Abstract
An uncertainty analysis performed in conjunction with the calibration of a subsonic venturi for use in a turbine test facility produced some unanticipated results that may have a significant impact in a variety of test situations. Precision uncertainty estimates using the preferred propagation techniques in the applicable American National Standards Institute/American Society of Mechanical Engineers standards were an order of magnitude larger than precision uncertainty estimates calculated directly from a sample of results (discharge coefficient) obtained at the same experimental set point. The differences were attributable to the effect of correlated precision errors, which previously have been considered negligible. An analysis explaining this phenomenon is presented. The article is not meant to document the venturi calibration, but rather to give a real example of results where correlated precision terms are important. The significance of the correlated precision terms could apply to many test situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.