Abstract

Aluminum alloys are commonly used as a material for heat exchangers due to their higher thermal conductivity and specific strength among various metallic materials. Twin roll strip casting process is considered to produce the high quality and low manufacturing cost aluminum alloy fin stock for automobile heat exchangers. Thermomechamical treatment has carried out to obtain optimum processes for initial cold rolling, intermediate annealing and final cold rolling, which can meet the requirements for high strength and high thermal conductivity after brazing heat treatment. Additionally the effect of copper element variation was considered to determine the optimum content of copper element in Al-Zn-Mn-Si-Fe-Cu based alloys produced by twin roll strip casting process. Mechanical properties and thermal condutivity have been evaluated before and after simulated brazing process. The nuclei of recrystallization might be formed along shear deformation bands during initial cold rolling and should be grown during intermediate annealing to enhance the permeation of molten brazings for the following brazing process. Final cold rolling has allowed strain hardening and controlling of sagging amount as fin stock materials of heat exchanger. In the present study the suitable thermomechnical treatment and optimum copper content was suggested to balance the properties of strength, thermal conductivity, brazing behaviour, corrosion resistance and sagging resistance in Al-Zn-Mn-Si-Fe-Cu based alloys produced by twin roll strip casting process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.