Abstract

Facilitation, or positive plant–plant interaction, has received increasing concern from ecologists over the last two decades. Facilitation may occur through direct mitigation of severe environments or indirect mediation by a third participant from the same or different trophic levels. The copper (Cu) tolerant species Elsholtzia splendens facilitates the establishment and growth of co-occurring Commelina communis through indirect enrichment of microbial activity. However, whether and how E. splendens impacts the microbial community that is associated with C. communis is less known. We characterized the soil bacterial community in the rhizosphere of C. communis in the absence and presence of E. splendens using PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and sequencing. The result showed that the richness of the bacterial community increased, but diversity and evenness remained similar, in the presence of E. splendens. Chloroflexi, Acidobacteria and Proteobacteria were the most dominant bacteria. The relative abundance of dominant and minor bacterial groups showed distinctly different responses to E. splendens. Principal component analysis and redundancy analysis indicated that variation of the bacterial community was determined by multiple factors and might be driven by the tested soil parameters collectively, or alternatively changed through plant root exudates or other microorganisms. Our results enhance the understanding of how the bacterial community associated with a beneficiary plant responds to a benefactor plant and suggests that the changes of bacterial community composition may have far-reaching influence on plant–soil feedback and the aboveground plant community in the long run.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.