Abstract
The paper studies the mechanisms of plastic relaxation and mechanical response depending on the concentration of Cu atoms at grain boundaries (GBs) in nanocrystalline aluminum with molecular dynamics simulations. A nonmonotonic dependence of the critical resolved shear stress on the Cu content at GBs is shown. This nonmonotonic dependence is related to the change in plastic relaxation mechanisms at GBs. At a low Cu content, GBs slip as dislocation walls, whereas an increase in Cu content involves a dislocation emission from GBs and grain rotation with GB sliding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.