Abstract
The microstructure and magnetic properties of Mg – Cu – Zn ferrites prepared by using solid-state reaction method have been investigated. X-ray diffraction (XRD), a scanning electron microscope (SEM), impedance analyzer and a vibrating sample magnetometer (VSM) were utilized in order to study the effect of copper substitution and its impact on the crystal structure, grain size, microstructure and magnetic properties of the Mg – Cu – Zn ferrite. The formation of cubic spinel phase was identified using XRD technique. The microstructures of the samples show that the grain growth is greatly enhanced by the addition of CuO which is attributed to the liquid phase during sintering. The average grain size (Dm) increases significantly with increasing Cu content. The initial permeability (μ') of the samples increases appreciably with increasing Cu content which is attributed to the increase of grain size and density of the samples. The resonance frequency (fr) of the samples shifts toward the lower frequency as the Cu content increases. The sharp fall of μ' in μ'-T curves is observed for all the samples which indicate the homogeneity of the samples. The saturation magnetization (Ms) of the Mg – Cu – Zn ferrites increases slightly with increasing Cu concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.