Abstract

An experiment was conducted to determine the effects of dietary Cu on performance, carcass characteristics, and muscle fatty acid composition in meat goats. Thirty five Jianyang Big-ear goat (JYB) kids (average BW 20.3 ± 0.6 kg and age 3 to 4 mo) were stratified by weight and randomly assigned to 1 of 7 experimental treatments (n = 5 goats per treatment). Treatments consisted of: 1) control (no supplemental Cu; 14.3 mg Cu/kg DM), 2) 20 mg supplemental Cu/kg DM, 3) 40 mg supplemental Cu/kg DM, 4) 80 mg supplemental Cu/kg DM, 5) 160 mg supplemental Cu/kg DM, 6) 320 mg supplemental Cu/kg DM, and 7) 640 mg supplemental Cu/kg DM. Copper was supplemented from CuSO4•5H2O (25.2% Cu). Goats were individually fed a concentrate-hay based diet for 96 d. Performance was not affected by Cu concentration. Liver Cu concentration was increased (P < 0.01) with Cu supplementation. Goats supplemented with 0 or 20 mg Cu/kg DM had lower (P < 0.01) liver Cu concentrations than the other treatments. Backfat depth (P < 0.01) and intramuscular fat (IMF) content (P < 0.01) were also increased with Cu supplementation. However, Cu-supplemented goats had lower (P = 0.04) longissimus muscle area (LMA) compared with control. Dietary Cu supplementation increased the percentage of C14:0 (P < 0.01), C20:4 (P < 0.01), and total polyunsaturated fatty acids (P = 0.03), decreased C18:1 trans (P = 0.04), and tended to decrease C18:0 (P = 0.08) in LM. Other fatty acids detected were not affected by dietary Cu supplementation (P > 0.10). These results indicate that JYB goats can tolerate up to 640 mg Cu/kg DM for 96 d without adverse effects on performance, but fat deposition and fatty acid composition in the body could be altered by Cu supplementation as low as 20 mg/kg of diet with high concentrate-hay. Copper supplementation increased backfat depth, IMF, and percentage of polyunsaturated fatty acids in LM and decreased LMA in the carcass of JYB goats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.