Abstract
Glutathione S-transferases (GSTs; EC 2.5.1.18) are major enzymes that function in Phase II detoxification reactions by catalyzing the conjugation of reduced glutathione through cysteine thiol. In this study, we cloned and sequenced four GST genes from the monogonont rotifer Brachionus koreanus. The domain regions of four Bk-GSTs showed a high similarity to those of other species. In addition, to evaluate the potential of GST genes as an early warning signal for oxidative stress, we exposed sublethal concentrations of copper (Cu) to B. koreanus and measured glutathione (GSH) contents and several antioxidant enzymes such as glutathione S-transferase (GST), glutathione peroxidase (GPx; EC 1.11.1.9), and glutathione reductase (GR; EC 1.8.1.7). The reactive oxygen species (ROS) at 12h and 24h after copper exposure increased significantly. GSH contents however did not increase significantly and even it decreased at 0.24mg/L at 12h. The activities of several antioxidant enzymes, particularly GPx and GR, showed a dramatic increase in 0.24mg/L of CuCl2. Messenger RNAs of each Bk-GST showed different patterns of modulations according to GST types, and particularly, Bk-GST-omega, Bk-GST-sigma, and Bk-GST zeta genes were highly sensitive to Cu. These results indicate that Bk-GSTs, functioning as one of the enzymatic defense mechanisms particularly in the early stage of oxidative stress response, were induced by Cu exposure. This also suggests that these genes and related enzymes have a potential as biomarkers for a more sensitive initial stress response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.