Abstract

This study aimed to determine an appropriate cooling timing in the root zone for lowering substrate temperature and its effect on physiological response of sweet pepper (Capsicum annum L. ‘Orange glory’) grown on coir substrate in summer, from the July 16 to October 15, 2012. Daily temperature of substrate, root activity, leaf water potential, first flowering date, and the number of fruits were measured by circulating cool water through a XL pipe in the root zone during either all day (all-day) or only night time (5 p.m. to 3 a.m.; night) from the July 23 to September 23, 2012. For comparison, no cooling (control) was also applied. Between the 23 rd of July and 31 st of August (hot temperature period), daily average temperatures in substrates were 25.6°C, 26.1°C, and 29.1°C for the all-day and night treatment, and control respectively. About 1.8 to 5°C lower substrate temperature was observed in both treatments compared to that of control. In sunny day (600-700 W?m -2 ?s -1 ), the highest temperature of substrate was measured between 4 p.m. and 5 p.m. under both the all-day and night treatments, whereas it was measured between 7 p.m. and 8 p.m. under the control. Substrate temperatures during the day (6 a.m. to 8 p.m.) and night (8 p.m. to 6 a.m.) differed depending on the treatments. During the day and night, averaged substrate temperature was lower about 3.3°C and 4.0°C for the all-day, and 2.1°C and 3.4° for the night treatment, compared to that of control. In the all-day and night treatment, the TD [TD = temperature of (control)] was greater in bottom than that of other regions of the substrate. Between the day and night, no different TD values were observed under the all-day treatment, whereas under the night treatment there was difference with the greatest degree in the bottom of the substrate. During the hot temperature period, total numbers of days when substrate temperature was over 25°C were 40, 23 and 27 days for the control, all-day, and night treatment, respectively, and the effect of lowering substrate temperature was therefore 42.5% and 32.5% for the all-day and night treatment, respectively, compared to that for the control. Root activity and leaf water potential of plants grown under the all-day treatment were significantly higher than those under the night treatment. The first flowering date in the all-day treatment was similar to that in the night treatment, but 4-5 day faster than in the control. Also, the number of fruits in both treatments was significantly higher than that in the control. However, there was no effect of root zone cooling on eliminating delay in fruiting caused by excessively higher air temperature (> 30°C), although the substrate temperature was reduced 1.8°C to 5°C. These results suggest that the method of cooling root zone temperature need to be incorporated into the lowering growing temperature for growth and fruit set of health paprika.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call