Abstract

AbstractDuring the continuous casting of low‐carbon Nb–Ti microalloyed steel, control of the slab surface microstructure and the behavior of the second‐phase precipitation are significantly influenced by the cooling rate. Through confocal laser scanning microscopy, the effect of the cooling rate on the behavior of ferrite precipitation both at the grain boundary and within the austenite was observed in situ and analyzed. The relationship between the cooling rate and precipitation of the microalloying elements on the slab surface microstructure was further analyzed by transmission electron microscopy. The results showed that the effect of microalloying element precipitation on proeutectoid ferrite phase transformation is mainly manifested in two aspects: (i) the carbonitrides of microalloying elements act as inoculant particles to promote nucleation of the proeutectoid ferrite and (ii) the carbon near the grain boundary is depleted when the microalloying elements precipitate into carbonitrides, inducing a decrease in the local carbon concentration and promoting ferrite precipitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.