Abstract

The effect of cooling rate on the solicitation microstructure of a ternary cast Al-5.17Cu-2.63Si alloy is investigated. To create widely different cooling rates for the investigated alloy, the melts were cast into four molds made of different materials: aluminum, graphite, sand, and alumina-silicate-fiber felt (a thermal insulated material), respectively. The cooling curves for each mold specimen were simultaneously measured using calibrated K-type thermocouples, which are linked to a PC computer. The microstructures are characterized in terms of eutectic volume fraction and second dendrite arm spacing. The experiment result shows that increasing the cooling rate increases the amount of eutectic phase and decreases significantly the second dendrite arm spacing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.