Abstract
We investigate the effect of cooling rate on the precipitation behavior during cooling from solution treatment temperature and post-aging of a high-strength Al–7.65Zn–2.59Mg–1.95Cu–0.11Zr–0.04Ti extruded alloy. Solution treatment at 450 °C caused the partial dissolution and disintegration of η phase, along with a partial recrystallization of Al grains. The formation of fine L12-type Al3Zr/Al3(Zr,Ti) (~ 20 nm) and relatively large Ti-rich dispersoids (~ 100 nm) took place during extrusion and/or solution treatment processes. The slow cooling from solution treatment temperature (0.3 °C/min) caused the precipitation of η phases on coarse Al3(Zr,Ti) particles (formed during solidification), Ti-rich dispersoids (formed during extrusion/solution treatment), grain boundaries, and grain interiors, thereby resulting in negligible aging responses during post-aging at room and elevated temperatures. During fast cooling at 850 °C/min, however, the η phases did not precipitate and thus the Al matrix remained supersaturated, leading to significant aging responses by the formation of GP zones and metastable η″/η′ precipitates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.