Abstract

Effect of cooling rate on modification and refinement of 4032 aluminum alloy has been investigated at cooling rates of 0.7~4.5 K/s. Sr is used to modify eutectic silicon and B is used to refine primary α-Al grains. Modification level of eutectic silicon and refining results of primary α-Al are characterized quantitatively by Lp based on the perimeter of eutectic silicon particles and the maximum grain length D, respectively. As the cooling rate decreases, the needle-like eutectic silicon particles increases and the modification level reduces with a constant Sr content. Influenced by alloying elements such as Mg, Cu and Ni, the modification level is very low at the lowest cooling rate of 0.7 K/s, but properly increasing Sr content in the melt can improve the modification. At the cooling rates of 0.7~4.5 K/s, the element B can transform coarse columnar dendritic α-Al grains to equiaxed ones, and controlling the ratio of Sr and B is a valid technique to avoid mutual poisoning. On the conditions of present experiments, the Sr content of 350 ppm and Sr:B ratio of about 1.1 are rational to modify eutectic silicon and refine primary α-Al grains simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.