Abstract

The objective of this study was to find the effect of cooling rate on microstructure and hardness of steel ball. Steel samples of φ3 mm × 10 mm have been used under the different cooling experiments to study microstructure evolution. The microstructure is observed with optical microscopy and scanning electron microscope, respectively. The transformation temperature is determined by dilatometric curves. The results show that faster the cooling rate is, the lower is the starting and finishing temperatures of austenite-to-pearlite transformation. However, faster cooling rate has no effect on the starting temperature of martensite transformation. The prior austenite grain size increases rapidly with a higher temperature and almost remains invariant with a longer austenitization time. The hardness y of steel and cooling rates x accord with a relationship: y = 11.885x4 − 131.06x3 + 443.75x2 − 320.21x + 387.45.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.