Abstract

The alloy (Ti 33Zr 33Hf 33) 70(Ni 50Cu 50) 20Al 10 developed by equiatomic substitution was prepared by using different quenching rates, i.e. rapid quenching by melt-spinning and relatively slow cooling using suction casting. The microstructural comparison between the as-spun ribbons and the as-cast bulk specimens reveals a different length scale of an icosahedral phase that formed upon solidification. The as-spun sample exhibits a mixture of nano-scale icosahedral, Zr 2Cu-type and amorphous phases after complete crystallization at 973 K indicating a high stability of the nano-scale icosahedral phase. Due to its small size (30–50 nm) there is no significant strain in the icosahedral phase. On the other hand, in the as-cast bulk sample Zr 2Cu-type and amorphous phases form in the micro-scale modulated icosahedral phase without any discernible exothermic reaction. The structural modulation of the icosahedral phase indicates the occurrence of strains during the growth. The different local accumulation of strain during the growth of the icosahedral phase induces a phase selection between the Zr 2Cu-type or amorphous phases in this alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.