Abstract

Though titanium alloys are being increasingly sought in a wide variety of engineering and biomedical applications, their manufacturability, especially machining and grinding imposes lot of constraints. Titanium alloys are readily machinable provided the cutting velocity is in the range of 30–60 m/min. To achieve higher productivity, if the cutting velocity is enhanced to 60–120 m/min and beyond, rapid tool wear takes place diminishing the available tool life. Tool wear in machining of titanium alloys is mainly due to high cutting zone temperature localised in the vicinity of the cutting edge and enhanced chemical reactivity of titanium with the tool material. Rapid tool wear encountered in machining of titanium alloys is a challenge that needs to be overcome. High pressure cooling in machining is a very promising technology for enhancing tool life and productivity via appropriate cooling and lubrication. The present investigation is an attempt to study the effects of jet application parameters, i.e., coolant pressure, angle of impingement of the jet, spot distance and nozzle diameter on tool wear and chip morphology and to compare the effectiveness while turning Ti-6Al-4V bars under high pressure cooling with neat oil. Results indicated that at a cutting speed of 85 m/min and feed of 0.2 mm/rev, high pressure cooling provided a tool life of 24 min vis-à-vis 12 min under cryogenic cooling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.