Abstract

In this study, we experimentally and theoretically show that the intensities of bright spots in a spherical aberration (C(s))-uncorrected high-angle annular dark-field (HAADF) scanning transmission electron microscope (STEM) image of [011]-oriented Co(3)O(4), which has two different numbers of Co atoms in the projected atomic columns, are reversed with increasing sample thickness. However, C(s)-corrected HAADF STEM images produce intensities that correctly depend on the average number of atoms in the projected atomic columns. From an analysis based on the Bloch-wave theorem, it is found that an insufficient semiangle of the incident convergent beam yields intensities that do not depend on the average atomic number in the atomic columns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.