Abstract

The effect of convective channel-to-channel mass flow on the local performance of a polymer electrolyte fuel cell (PEFC) air cathode is determined experimentally by using submillimeter resolved current density distribution measurements in channel and land areas. A special cell is employed, where the two parallel channels of the cathode flow field can be operated at different pressure. For isobaric operation of the channels (Δ p = 0 mbar), the lateral current density distribution shows a distinct minimum in the land area between the channels as diffusive mass transport becomes limiting at a higher cell polarization. Toward higher Δ p, the local cell performance in the land area improves initially as a result of an improving convective channel-to-channel mass flow. However, as the pressure difference exceeds a value of 10 mbar, no noteworthy additional benefit is observed with further increasing Δ p. Under these conditions, the convective mass flow provides an abundant reactant supply in the land area and, since reactant depletion is no longer limiting, the lateral current density distribution is primarily governed by the local ohmic resistance. As a result, the current density exhibits a maximum in the land area, where the local ohmic resistance shows a minimum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.