Abstract

In Czochralski silicon (CZ-Si) crystal growth, packed Si chunks experience collapse and volume shrinkage during the melting process. The axial movements of the crucible and the melting of the Si feedstock lead to dynamic thermal and flow fields and affect mass transport. To study the effect of crucible movement on the melting process and carbon (C) contamination, the cases of fixed and lifting crucible were investigated by the transient global simulation with dynamic mesh deformation. The gap width between the gas-guide and the top surface of Si feedstock was kept constant during the crucible lifting process. Impurity and species transport in Si feedstock and argon gas was investigated for the cases with the fixed and lifting crucibles. The comparison of C accumulation processes indicated that the lifting crucible case resulted in higher C contamination than that found in the fixed crucible case. Furthermore, lifting crucible cases with different gap widths were investigated to elaborate strategies for controlling the crucible movement for its effect on the melting process and C contamination in CZ-Si crystal growth. It was observed that the optimum gap width for C reduction results from the trade-off between the back diffusion and gas convection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.