Abstract

Hydrogen is recognised globally as one of the main renewable energy sources to produce clean fuel used in combustion engines. The study examines the effects of using hydrogen as an additive fuel in a diesel compression engine. The samples selected, and used in the study included; neat diesel fuel (D0), diesel with 2 l/min (D+H2), diesel with 4 l/min (D+H4), diesel with 6 l/min (D+H6) and diesel with 7 l/min (D+H7). Samples were tested to determine the characteristics associated with engine performance at a speed of 2000 ± 100 rpm, and applying a constant hydraulic pressure of 2000kPa. The presence of hydrogen was introduced into the engine via the intake manifold, without requiring an injection device. The test results demonstrated an improvement in brake power and brake thermal efficiency (BTE) of approximately 701.51W and 28.57% respectively. The torque produced by the engine was maintained at 2.82Nm. The brake specific fuel consumption (BSFC) was found to be quite compelling, with an overall reduction from 0.44 kg/kWh to 0.21kg/kWh, with an incremental hydrogen flow rate. Furthermore, the temperature of exhaust gas displayed an inclined pattern with maximum NOx emissions appearing at a hydrogen flow rate of 4 l/min (D+H4). However, the unburnt hydrocarbon (HC), carbon dioxide (CO2) and carbon monoxide (CO) emissions were reduced by 22.2%, 79.9%, and 21.6% respectively from the diesel baseline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.