Abstract

BackgroundThe effect of rescue breathing on neurologic prognosis after cardiopulmonary resuscitation (CPR) is controversial. Therefore, we investigated the cerebral microcirculatory and oxygen metabolism during continuous compression (CC) and 30:2 CPR (VC) in a porcine model of cardiac arrest to determine which is better for neurologic prognosis after CPR.MethodsAfter 4 min of ventricular fibrillation, 20 pigs were randomised into two groups (n=10/group) receiving CC-CPR or VC-CPR. Cerebral oxygen metabolism and blood flow were measured continuously using laser Doppler flowmetry. Haemodynamic data were recorded at baseline and 5 min, 30 min, 2 h and 4 h after restoration of spontaneous circulation (ROSC).ResultsCompared with the VC group, the mean cortical cerebral blood flow was significantly higher at 5 min ROSC in the CC group (P<0.05), but the difference disappeared after that time point. Brain percutaneous oxygen partial pressures were higher, and brain percutaneous carbon dioxide partial pressures were lower, in the VC group from 30 min to 4 h after ROSC; significant differences were found between the two groups (P<0.05). However, no significant difference of the cerebral oxygen extraction fraction existed between the two groups.ConclusionsInconsistency of systemic circulation and cerebral microcirculation with regard to blood perfusion and oxygen metabolism is common after CPR. No significant differences in cortical blood flow and oxygen metabolism were found between the CC-CPR and VC-CPR groups after ROSC.

Highlights

  • The recommendations of the 2010 American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) are based on adequate chest compressions for a critical amount of blood flow to the brain and the ventilation necessary to achieve adequate gas exchange [1]

  • Percutaneous partial pressure of oxygen (PbtO2) was higher in the VC group than in the continuous compression (CC) group, and significant differences were found between the two groups at 5 min, 2 h and 4 h after restoration of spontaneous circulation (ROSC) (P

  • PH and PaO2 recovered at 2 h and 4 h after ROSC in both groups (Table 1), and no significant difference in PaO2 and pH was found between the two groups

Read more

Summary

Introduction

The recommendations of the 2010 American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) are based on adequate chest compressions for a critical amount of blood flow to the brain and the ventilation necessary to achieve adequate gas exchange [1]. Some experimental studies concerning cardiac arrest (CA) have shown that, compared with 30:2 chest compression (VC), continuous compression (CC) presents a similar rate of recovery and better neurological prognosis in addition to no significant deterioration in blood gas parameters in the first 4–8 min of resuscitation [2,3]. According to the results of our previous study, in the first 12 min of CPR, CC maintains a relatively better coronary perfusion pressure (CPP), PaO2 and global ventilation/perfusion than VC [7]. We investigated the cerebral microcirculatory and oxygen metabolism during continuous compression (CC) and 30:2 CPR (VC) in a porcine model of cardiac arrest to determine which is better for neurologic prognosis after CPR

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.