Abstract
We report on the effect of fast contact stiffness modulation on frequency response to 2:1 subharmonic resonance in contact-mode atomic force microscopy. The model of the contact-mode dynamic between the tip of the microbeam and the moving surface consists of a lumped single degree of freedom Hertzian contact oscillator. Perturbation methods are applied to obtain the frequency response of the slow dynamic of the system. We focus on the effect of the amplitude and the frequency of the modulation on the nonlinear characteristic of the contact stiffness, the jump phenomenon and the shift in the frequency response of the subharmonic. We also show the effect of the contact stiffness modulation on the interval of the unstable trivial solution which is directly correlated to the depth of the jump. The obtained results can directly influence the material properties and the loss of contact between the tip and the sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.