Abstract

We report on the effect of fast contact stiffness modulation on frequency response to 2:1 subharmonic resonance in contact-mode atomic force microscopy. The model of the contact-mode dynamic between the tip of the microbeam and the moving surface consists of a lumped single degree of freedom Hertzian contact oscillator. Perturbation methods are applied to obtain the frequency response of the slow dynamic of the system. We focus on the effect of the amplitude and the frequency of the modulation on the nonlinear characteristic of the contact stiffness, the jump phenomenon and the shift in the frequency response of the subharmonic. We also show the effect of the contact stiffness modulation on the interval of the unstable trivial solution which is directly correlated to the depth of the jump. The obtained results can directly influence the material properties and the loss of contact between the tip and the sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call