Abstract

Open microfluidic devices based on actuation techniques such as electrowetting, dielectrophoresis, or thermocapillary stresses require controlled motion of small liquid droplets on the surface of glass or silicon substrates. In this article we explore the physical mechanisms affecting thermocapillary migration of droplets generated by surface temperature gradients on the supporting substrate. Using a combination of experiment and modeling, we investigate the behavior of the threshold force required for droplet mobilization and the speed after depinning as a function of the droplet size, the applied thermal gradient and the liquid material parameters. The experimental results are well described by a hydrodynamic model based on earlier work by Ford and Nadim. The model describes the steady motion of a two-dimensional droplet driven by thermocapillary stresses including contact angle hysteresis. The results of this study highlight the critical role of chemical or mechanical hysteresis and the need to reduce this retentive force for minimizing power requirements in microfluidic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.