Abstract
The effect of geometrical confinement on the deformation and orientation of single droplets during steady-state shear flow is investigated microscopically in a counterrotating device. The model system consists of poly(dimethyl siloxane) droplets of varying sizes and viscosities in a poly(isobutylene) matrix. The experimental results are first compared with the predictions of the model by Maffettone and Minale [J. Non-Newtonian Fluid Mech. 78, 227–241 (1998)] for bulk flow. For all viscosity ratios, deviations from the Maffettone and Minale model start to occur at a droplet diameter to gap spacing ratio of the order of 0.4. The droplet deformation increases and the droplets orient more towards the flow direction as a consequence of confinement. At low viscosity ratios, the deviations remain small, whereas at high viscosity ratios, larger deviations from bulk behavior are observed. The observations are also compared with the theory of Shapira and Haber [Int. J. Multiphase Flow 16, 305–321 (1990)] which incl...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.