Abstract

The performance of the high-end optoelectronic devices is essentially influenced by the intrinsic relaxation mechanisms pursued by the hot carriers. Therefore, the key toward achieving progression in such fields lies in developing a complete understanding of the involved carrier cooling dynamics. In this work, an endeavor has been made to highlight the difference in the cooling mechanisms in 2D CsPbBr3 nanosheets (NSs) and their 3D counterpart nanocrystals (NCs) with the aid of femtosecond broad-band pump-probe spectroscopy, varying the excitation energies. The exciton and biexciton dynamics in both systems are found to be retarded upon increasing the excitation energy. However, in contrast to 3D NCs, carrier cooling is found to be faster in the 2D system, regardless of the excitation energy used, attributing this to less efficient charge screening by Fröhlich interaction in low-dielectric medium. A similar trend is replicated in the biexciton formation rate since the formation is also found to be faster in NSs compared to NCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.