Abstract
AbstractThe effect of confinement on glass dynamics combined with the corresponding free volume changes of amorphous polystyrene (PS) in blends with semi‐crystalline high‐density polyethylene (HDPE) have been investigated using thermal analyses and positron annihilation lifetime spectroscopy (PALS). Two different glass transition temperatures (Tg) were observed in a PS/HDPE blend due to the dissimilarity in the chemical structure, consistent with an immiscible blend. However, Tg of PS in the incompatible PS/HDPE blend showed an upward trend with increasing PS content resulting from the confinement effect, while Tg of the semi‐crystalline HDPE component became lower than that of neat HDPE. Moreover, the elevation of Tg of PS was enhanced with a decrease of free volume radius by comparing annealed and unannealed PS/HDPE blends. Positron results showed that the free volume radius clearly decreased with annealing for all compositions, although the free volume hole size agreed well with linear additivity, indicating that there was only a weak interaction between the two components. Combining PALS with thermal analysis results, the confinement effect on the glass dynamics and free volume of PS phase in PS/HDPE blends could be attributed to the shrinkage of HDPE during crystallization when HDPE acted as the continuous phase. © 2015 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.