Abstract
We study numerically the influence of confinement on the solid fraction and on the structure of three-dimensional random close-packed granular materials subject to gravity. The effects of grain shape (spherical or polyhedral), material polydispersity, and confining wall friction on this dependence are investigated. In agreement with a simple geometrical model, the solid fraction is found to decrease linearly for increasing confinement no matter the grain shape. Furthermore, this decrease remains valid for bidisperse sphere packings, although the gradient seems to reduce significantly when the proportion of small particles reaches 40% by volume. The confinement effect on the coordination number is also captured by an extension of the aforementioned model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.